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ABSTRACT

In this paper, the issue of optimal area allocation for passive
components in monolithic active-RC filters is formalized.
Optimal area allocations for several popular first- and second-
order structures are derived. A conjecture is presented for
optimal area allocation for more general filter structures.

1. INTRODUCTION

As part of a typical interface between the analog world and the
digital world, continuous-time filters are widely used for
antialiasing and reconstruction. Considerable demand exists for
more general integrated filters as well. The most popular
technique for building audio frequency continuous-time filters is
to use either a Gm-C or a MOSFET-C approach. There are two
main limitations of these types of filters. The first limitation is
the process and temperature dependence of both the
transconductance elements and the capacitors. This limitation is
often overcome by electronically tuning or adapting either the
transconductance elements or the capacitors and several
techniques that give reasonable performance have been reported
in the literature [1]. The other limitation, poor linearity, has been
a problem for many years and although some linearization
schemes have been proposed, nonlinearity remains a serious
limitation of these two types of filters. These limitations were the
major reasons that the switched-capacitor technique has evolved.
Specifically, the switched capacitor circuits are known to have
very precisely controlled pole and zero frequencies and good
linearity. Switched capacitor filters are not without limitations.
Switched capacitor filters inherently provide switching noise,
require accurate clock generation, and are inherently discrete
time rather than continuous-time in nature thus presenting
aliasing of high-frequency noise into the frequency band of
interest. In some semiconductor processes, good capacitors
and/or good switches may not be available as well.

The conventional active RC filters are inherently linear
and operate in the continuous-time domain and both of these
properties are particularly attractive for a host of applications
[2]. There are, however, two problems with audio frequency
monolithic active RC filters. The first problem is the control of
the RC products. In some anti-aliasing applications this may not
be of concern and the tuning techniques that are used to tune
gm-C and MOSFET-C filters can be readily adapted to tune
active RC filters. The second problem is the area required to
implement the passive components. Specifically, the large RC
time constants needed to operate at audio frequencies range
invariably require large valued resistors or large valued

capacitors or both. A new strategy has been recently introduced
to substantially reduce the total resistance or capacitance values
needed to realize a given RC product [3]. Then, the issue of
minimizing the area required to realize the passive elements
becomes increasingly important if these filters are to become
practical in the audio frequency applications.

Closed-form solutions have shown that for some
simple first-order filter structures, the active area will be
minimized if the resistor area equals the capacitor area.
Conventional wisdom also suggests that this may be true in a
more general case as well but there does not appear to be any
formal mathematical prove to support this wisdom in literature
and often this wisdom has been gathered from computer
simulations for specific filter structures. In the previous works,
there were no considerations for optimizing the total area for
passive elements in literatures even when area is not an
ignorable issue, whether for high frequency range RC filters [4]
or lower frequency applications [5]. In the following section, the
optimal area allocation for several different first-order and
second-order active filters is investigated.

2. OPTIMUM PASSIVE AREA OF THE FIRST
ORDER STRUCTURE

2.1 Single Pole Circuit

Single pole system will be discussed in this section.

Figure 1 Single Pole Circuit

The total passive area is the summation of the area of the resistor
R and the capacitor C. If the resistance density and capacitance
density are Rd and Cd respectively, the total area

CRT AAA +=
is given by the expression
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Since the pole is determined by the RC product, we introduce
the constraint RC=K where K is a predetermined value. The
optimum area allocation is obtained by taking the partial
derivatives of AT with respect to R and C and then setting these
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equal to zero subject to the constraint mentioned. We obtain the
well-known result for minimizing the total active area

CR AA =
This equal area allocation is independent of the value

for K, Rd and Cd.

2.2 First Order Active Filter

We will next consider the first-order active filter comprising two
resistors and one capacitor shown in Fig. 2.

Figure 2 First Order Filter

The transfer function of this filter is given by the expression
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For this transfer function, there are three design
variables, R1, R2, and C. If the bandwidth and DC gain are set,
we will have two constrains:
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where,
1K and

2K are constants. It follows that the total area for

the RC constants is given by the expression
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where,
TA is the total area,

RA is the total area for the resistors

and
cA is the total area for capacitors. Similarly,

dR and
dC are

resistor density and capacitance density, respectively.
Using Lagrangian multipliers, to embed the

constraints, we build the Hamiltonian function as shown below:
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Taking the partial derivatives with respect to R1 and R2 we
obtain the expressions
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Setting these two derivatives to zero we obtain
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It thus follows that the total resistor area is given by
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The same operations can be applied to the capacitor resulting in
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Thus, we obtain the total capacitor area
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Comparing (11) and (13), it shows that the minimal area
allocation is achieved when AC = AR. Note that this optimal area
allocation is again independent of constrains K1 and K2.

2.3 First Order Filter with Transconductance T-network

The previous filter structure requires a big component ratio to
achieve large dc gains. This big component ratio invariably
requires a large area to realize the large resistor. Since the
feedback resistor in the previous filter simply serves as a
“transimpedance” element, the issue of maintaining the same
overall transfer function with lower component ratios using
alternative transimpedance elements deserves attention. A
modification of this first order filter using a T-network to replace
the resistor will reduce the area dramatically while keeping very
good linearity [3]. The modified networks are shown in
Fig.3.and Figure4.

Figure 3 T-network

Figure 4 First Order Filter with T-network

The relationship between the resistor R2 and the
corresponding resistors of the T-network is given by the
expression
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If R22 is sufficiently small, equation (14) can be reduces to the
approximate relationship
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For the appropriate values of R21, R22 and R23, a dramatic
reduction in the area required to realize the overall
“transimpedance” R2 can be achieved.

To find the optimum area allocation for this circuit,
observe there are now four resistor values and one capacitor
values with only two constraints, dc gain and pole frequency.
We will now establish the 4 constraints by setting the ratio of R21

over R22 as K3 and R21 over R23 as K4
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building the Hamiltonian function as below:
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Taking the partial derivatives of R1, R21, R22, R23, and C and set
these equations to zero, we have
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from constrains (16) and (17), we can derive:
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replacing (29) and (30) into the equation (28), we have
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It clearly shows that the conjecture presented above is true for
the first-order filter with the T-network and it will reduce the
passive area further. Now the question is if that is the truth for
alternate structure for higher order filters? The following part is
focused on the several most popular second-order filters.

3. MINIMIZING THE PASSIVE AREA FOR
SECOND-ORDER FILTERS

Three second-order filters will now be presented in this section.
These are the Tow-Thomas Biquad, the Tow-Thomas Biquad
with a T network to reduce component spread, and the bridged-T
feedback structure. The Tow-Thomas biquad and the bridge-T
feedback structures have been widely used for implementing
analog filters. The modified Tow-Thomas biquad is used for

building high-linear integrated audio frequency filters within
fairly small area [2]. These structures were chosen because they
use different numbers of passive components, have different
component rations, and use different numbers of op amps.

3.1 Tow-Thomas Biquad

The first example is Tow-Thomas biquad.

Figure 5 Tow-Thomas Biquad

The transfer function is shown as below:
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In this implementation, we have assumed the
integration resistors are equal. We will not consider any resistor
area associated with the resistors used to realize the finite gain
amplifier, that is, the area required to realize the two RA resistors
will be ignored. We will ignore these resistors because we view
this as a dimensionless gain block. Thus, we will consider the
area related with the components that determine the poles of the
network, specifically the two R resistors, the RQ resistor and the
capacitors C and C1.

If the w0, Q and dc gain are all set, we have three
constrains:

1KCRQ = (37)

21
2 KCCR = (38)

3
1

K
R

R = (39)

Following the same analysis in previous section, we building the
Hamiltonian function
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Taking the partial derivatives of R, R1, RQ and C, we can get the
expression of the area for resistors and capacitors respectively:
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Comparing the equations (41) and (42), we can see that the area
of resistors is the same as the area of capacitors when minimum
passive area is obtained. This results is still independent of
constrain K1, K2, K3.

3.2 Tow-Thomas Biquad with the Transconductance T-
network
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After the transconductance network has been introduced into the
circuit, all the large resistors are replaced by T-networks [2]. R,
R1, Rq in figure 5 are all replaced by the T-networks composed
by three resistors, R1, R2 and R3 with the relationship:
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R =⋅≅ .There is similar transformation and all the

analysis is the same as the first-order one presented in section 2.
From that, we know that this conjecture is still hold in the
second-order filters with T-network. Thus this strategy shows
practical importance in the design of the RC-filters for audio
frequency applications.

3.3 Second-order Bridge-T Feedback

Another popular second-order system is studied in this section.

Figure 6 Second-order Bridge-T Feedback Circuit

The transfer function is shown below:
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Three constrains are set:
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Total area and Hamiltonian function shown as below
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Taking the partial derivatives of H respect to all the variables to

achieve the following results.
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Comparing the equation (49) and (50), it proves that the area for
resistors equates the area of the capacitors when the optimum
passive area is achieved.

4. OTHER ACTIVE RC FILTER STRUCTURES

The first-order and second-order filter structures studied in the
previous two sections represent some of the more popular first-

order and second-order active RC filters. Although they are of
interest in their own right, they were also selected because they
represent fundamentally different filter architectures with
varying numbers of components, component spreads and internal
nodes. Since the minimum total area for the resistors and
capacitors was always achieved when the total resistor area
equaled the total capacitor area, the question about whether this
is a property inherent in all active RC filters naturally arises.
Needles to say, when the authors investigated this problem,
essentially all active filters that were considered, with the
exception associated with the resistors needed to build finite gain
amplifiers as described below, possessed this property. Thus, it
is conjectured that this property is shared by a much larger
number of useful active RC filters. The exception has to do with
circuits that use resistors to build finite gain amplifiers. The
Tow-Thomas biquad discussed above included such a finite gain
amplifier as do some of the Sallen and Key filters. Beyond
observing that such filters are characterized by a hinged graph of
passive components in contrast to all examples considered in the
previous sections in which the graph of passive components are
not hinged, we will not attempt to conjecture what topological
properties of the filter are necessary for the equal resistor/equal
capacitor area property to hold.

5. CONCLUSION

The problem of minimizing area for passive components in
audio frequency active filters has been addressed for the first
time in closed-form. In this paper, several popular and useful
first-order and second-order RC active filter structures with
substantially different component ratios and with varying
numbers of passive components were considered. These
structures are all inherently continuous-time in nature and offer
excellent linearity when compared to alternative continuous-time
monolithic filter approaches based upon using transconductors
or MOSFETs as resistance or transresistance elements. A
detailed analysis of each of these structures showed that the total
area for the resistors and capacitors is minimized when the total
resistor area equals the total capacitor area irrespective of
capacitance density, resistance density, pole locations or DC
gain.
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